1619=16t^2

Simple and best practice solution for 1619=16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1619=16t^2 equation:



1619=16t^2
We move all terms to the left:
1619-(16t^2)=0
a = -16; b = 0; c = +1619;
Δ = b2-4ac
Δ = 02-4·(-16)·1619
Δ = 103616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{103616}=\sqrt{64*1619}=\sqrt{64}*\sqrt{1619}=8\sqrt{1619}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1619}}{2*-16}=\frac{0-8\sqrt{1619}}{-32} =-\frac{8\sqrt{1619}}{-32} =-\frac{\sqrt{1619}}{-4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1619}}{2*-16}=\frac{0+8\sqrt{1619}}{-32} =\frac{8\sqrt{1619}}{-32} =\frac{\sqrt{1619}}{-4} $

See similar equations:

| 8(x-5)+8=7(x+8) | | 1/x=4× | | 3(x-5)^2=24 | | 180=(90)+(11x-2)+(6x+7) | | 4x=2x-5=7 | | 3(x-5)^2+7=31 | | 19x-3=150 | | w/2+10=11 | | ​4x+15x-65=11 | | 3(3+2x)-3=42 | | 1/2(3n+8)=5n+21 | | 3x+23+x^2+49=180 | | 6.7x+2.2x=93.45 | | 3n+8=1/2(5n+21) | | 180=(90)+(3x+2)+(x) | | x-146=135 | | 3n+8+5n+21=52 | | x-146=136 | | 3n+8+5n+21=18 | | 3n+8=5n+21 | | 2^n=10^4 | | p^2-25p+144=0 | | -12c=-10-14c | | 7a+10=2a-7a | | 3s-16=-14+s | | 180=(2*36)+(90)+(3x) | | 3x-3÷x+20=1÷2 | | 180=(2x36)+(90)+(3x) | | 4(f-15)-5=11 | | 4(5x)=130 | | -4(1v-2)=2(-2v+7) | | 5x-8=2x-3 |

Equations solver categories